
Supervised Kernel Thinning

Motivation: Kernel methods are powerful 
ways of fitting regression models. 
Problem: Computationally slow when 
sample size is large. E.g.,  training and  
inference time with sample size  for kernel 
ridge regression 
Goal: Speed-up without loss of statistical 
accuracy. 
Idea: Use distribution compression 
algorithms, in particular kernel thinning. 
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1. Valid for  lying in the RKHS of  
2. Minimax even with  for 

Gaussian  and various set of input points 
3. Near-linear runtime when 
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Key Innovation 
1. Express the problem or solution as an average 
over functions 

2. Identify kernel  whose RKHS contains these 
functions 

3. Apply Kernel thinning with  with  
4. Enjoy  to x speed-up and better-than-i.i.d. 
error rates!

k′ 

(xi, yi)n
i=1 k′ 

102 105

Kernel Ridge 
Regression (KRR)
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f ⋆ i.  lies in RKHS of  
ii.  lies in RKHS of 

 
iii.  lies in RKHS of  

 
KRR loss lies in the RKHS of 

f 2 k2(x1, x2)
(x, y) ↦ y ⋅ f(x)
y1y2 ⋅ k(x1, x2)
y2 (y1y2)2

⇓

k2(x1, x2) + y1y2 ⋅ k(x1, x2) + (y1y2)2

Assumptions: 
*  is  Holder for ,  has compact 

support, and  
**  is in the RKHS of ,  has rank , and 

f ⋆ β β ∈ (0,2] k
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f ⋆ k k m nout = n

What happens if we directly apply unsupervised 
kernel thinning? Speed-up but with poor accuracy. 

Kernel smoothing with Wendlandk =

Kernel ridge regression with Gaussiank =
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Kernel Smoothing 
(Nadaraya-Watson)

i.  lies in the RKHS of  
ii.  lies in the 

RKHS of ! 
 

Both denominator and numerator 
functions lie in the RKHS of 

k(x, ⋅ ) k
(x′ , y′ ) ↦ y′ ⋅ k(x, x′ )

y1y2 ⋅ k(x1, x2)
⇓

k(x1, x2) + y1y2 ⋅ k(x1, x2)

when compressing with  for finite rank k2 k

Unsupervised Kernel Thinning
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