
Supervised Kernel Thinning

Motivation: Kernel methods are powerful
ways of fitting regression models.
Problem: Computationally slow when
sample size is large. E.g., training and
inference time with sample size for kernel
ridge regression
Goal: Speed-up without loss of statistical
accuracy.
Idea: Use distribution compression
algorithms, in particular kernel thinning.

n3 n
n

Raaz DwivediKyuseong ChoiAlbert Gong

1. Valid for lying in the RKHS of
2. Minimax even with for

Gaussian and various set of input points
3. Near-linear runtime when

f k
nout = n

k
nout = n

|
1
n

n

∑
i=1

f(xi) −
1

nout

nout

∑
i=1

f(x′￼i) | ≾
∥f∥k log(nout)

nout

Dwivedi & Mackey ’21, ’22, ’24
Shetty-Dwivedi-Mackey ’22
Domingo-Enrich-Dwivedi-Mackey ’23
Li-Dwivedi-Mackey ’24

| 1
n ∑n

i=1 f2(xi) − 1
nout

∑nout
i=1 f2(x′￼i) |

1
n ∑n

i=1 f 2(xi)
≾

m log(nout)
nout

Key Innovation
1. Express the problem or solution as an average
over functions

2. Identify kernel whose RKHS contains these
functions

3. Apply Kernel thinning with with
4. Enjoy to x speed-up and better-than-i.i.d.
error rates!

k′￼

(xi, yi)n
i=1 k′￼

102 105

Kernel Ridge
Regression (KRR)

minf∈ℋ
1
n

n

∑
i=1

(f(xi) − yi)2 + λ∥f∥2
ℋ

f ⋆ i. lies in RKHS of
ii. lies in RKHS of

iii. lies in RKHS of

KRR loss lies in the RKHS of

f 2 k2(x1, x2)
(x, y) ↦ y ⋅ f(x)
y1y2 ⋅ k(x1, x2)
y2 (y1y2)2

⇓

k2(x1, x2) + y1y2 ⋅ k(x1, x2) + (y1y2)2

Assumptions:
* is Holder for , has compact

support, and
** is in the RKHS of , has rank , and

f ⋆ β β ∈ (0,2] k
nout = n

f ⋆ k k m nout = n

What happens if we directly apply unsupervised
kernel thinning? Speed-up but with poor accuracy.

Kernel smoothing with Wendlandk =

Kernel ridge regression with Gaussiank =

 ̂fNW(x) =
1
n ∑n

i=1 yik(x, xi)
1
n ∑n

i=1 k(x, xi)

Kernel Smoothing
(Nadaraya-Watson)

i. lies in the RKHS of
ii. lies in the

RKHS of !

Both denominator and numerator
functions lie in the RKHS of

k(x, ⋅) k
(x′￼, y′￼) ↦ y′￼⋅ k(x, x′￼)

y1y2 ⋅ k(x1, x2)
⇓

k(x1, x2) + y1y2 ⋅ k(x1, x2)

when compressing with for finite rank k2 k

Unsupervised Kernel Thinning
x1, …, xn

x′￼1, …, x′￼nout

+ Greedy post-processing

Recursive halving
via Self-Balancing
Hilbert Walk

Full
Sub-

sample
Ours* Full

Sub-
sample

Ours**

MSE

Training

Inference

n log3 n

n− 2β
2β + d n− β

2β + d σ2 m
n

σ2 m

n

n

nn

n

n

n− β
β + d

m
n

∥f ⋆∥2
k

n3 n1.5 n1.5

n nn

Nadaraya-Watson KRR

