Supervised Kernel Thinning

Motivation: Kernel methods are powerful ways of fitting regression models.

Problem: Computationally slow when sample size is large. E.g., n^3 training and ninference time with sample size *n* for kernel ridge regression

Goal: Speed-up without loss of statistical accuracy.

Idea: Use distribution compression algorithms, in particular kernel thinning.

Unsupervised Kernel Thinning

3. Near-linear runtime when $n_{out} = \sqrt{n}$

Dwivedi & Mackey '21, '22, '24 Shetty-Dwivedi-Mackey '22 Domingo-Enrich-Dwivedi-Mackey '23 Li-Dwivedi-Mackey '24

Albert Gong Kyuseong Choi

Raaz Dwivedi

What happens if we directly apply unsupervised **kernel thinning?** Speed-up but with poor accuracy.

Key Innovation

- Express the problem or solution as an average over functions
- 2. Identify kernel \mathbf{k}' whose RKHS contains these functions
- 3. Apply Kernel thinning with $(x_i, y_i)_{i=1}^n$ with \mathbf{k}'
- 4. Enjoy 10^2 to 10^5 x speed-up and better-than-i.i.d. error rates!

Cornell University

HOME OF THE **JACOBS TECHNION-CORNELL** INSTITUTE

Kernel Smoothing (Nadaraya-Watson)

$$\hat{f}_{\text{NW}}(x) = \frac{\frac{1}{n} \sum_{i=1}^{n} y_i \mathbf{k}(x, x_i)}{\frac{1}{n} \sum_{i=1}^{n} \mathbf{k}(x, x_i)}$$

- i. $\mathbf{k}(x, \cdot)$ lies in the RKHS of \mathbf{k}
- ii. $(x', y') \mapsto y' \cdot \mathbf{k}(x, x')$ lies in the RKHS of $y_1y_2 \cdot \mathbf{k}(x_1, x_2)!$
- Both denominator and numerator functions lie in the RKHS of

$$\mathbf{k}(x_1, x_2) + y_1 y_2 \cdot \mathbf{k}(x_1, x_2)$$

Kernel Ridge **Regression (KRR)**

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2 + \lambda \|f\|_{\mathcal{H}}^2$$

- i. f^2 lies in RKHS of $\mathbf{k}^2(x_1, x_2)$
- ii. $(x, y) \mapsto y \cdot f(x)$ lies in RKHS of $y_1 y_2 \cdot \mathbf{k}(x_1, x_2)$
- iii. y^2 lies in RKHS of $(y_1y_2)^2$

KRR loss lies in the RKHS of $\mathbf{k}^{2}(x_{1}, x_{2}) + y_{1}y_{2} \cdot \mathbf{k}(x_{1}, x_{2}) + (y_{1}y_{2})^{2}$

	Nadaraya-Watson			KRR		
	Full	Sub- sample	Ours*	Full	Sub- sample	Ours**
MSE	$n^{-\frac{2\beta}{2\beta+d}}$	$n^{-rac{\beta}{2\beta+d}}$	$n^{-rac{\beta}{\beta+d}}$	$\sigma^2 \frac{m}{n}$	$\sigma^2 \frac{m}{\sqrt{n}}$	$\frac{m}{n} \ f^{\star}\ _{\mathbf{k}}^2$
Training	n	\sqrt{n}	$n\log^3 n$	n^3	<i>n</i> ^{1.5}	<i>n</i> ^{1.5}
Inference	п	\sqrt{n}	\sqrt{n}	п	\sqrt{n}	\sqrt{n}

Assumptions:

* f^* is β Holder for $\beta \in (0,2]$, **k** has compact support, and $n_{out} = \sqrt{n}$ ** f^* is in the RKHS of **k**, **k** has rank *m*, and $n_{out} = \sqrt{n}$

$$\frac{|\frac{1}{n}\sum_{i=1}^{n}f^{2}(x_{i}) - \frac{1}{n_{\text{out}}}\sum_{i=1}^{n}f^{2}(x_{i}')|}{\frac{1}{n}\sum_{i=1}^{n}f^{2}(x_{i})} \lesssim \frac{\sqrt{m\log(n_{\text{out}})}}{n_{\text{out}}}$$

when compressing with \mathbf{k}^2 for finite rank \mathbf{k}